
System Architecture and Query Processing of the
WaterFowl RDF Store

Olivier Curé
LIGM CNRS UMR 8049

Université Paris-Est, France
ocure@univ-mlv.fr

Guillaume Blin
LaBRI CNRS UMR 5800
Université de Bordeaux,

France
guillaume.blin@labri.fr

Thomas Le Roux, Remy
Luciani, Ludovic Feltz,

Arnaud Thalamot,
Frédérick Richard

Université Paris-Est, France
{firstname.lastname}@univ-

mlv.fr

ABSTRACT
Data management systems evolving in big data ecosystems
usually address the volume issues with distribution and repli-
cation mechanisms. Unfortunately, very few of these sys-
tems consider data compression has a salient aspect. We
consider that database management systems could benefit
from the nice properties of state of the art compressed struc-
tures. In this paper, we present an architecture for the stor-
age of RDF triples that is based on highly compressed struc-
tures and its set of decompression-free querying operations.
Our current prototype proposes efficient storage, querying
and reasoning facilities. The potential of our query proces-
sor is demonstrated on evaluations conducted on synthetic
datasets.

1. INTRODUCTION
The main approaches used to address the volume issues of
big data have been the distribution and replication of data
over a cluster of commodity hardware. Although generally
quite efficient, we consider that by itself, these solutions will
soon be insufficient to confront coming data deluges. We
argue that local, i.e., on each machine of the cluster, data
compression will soon become an essential aspect of such sys-
tems. Obviously, database management systems designed
on this approach have positive financial and ecological im-
pacts since less machines are needed to serve the same ap-
plications. Moreover, we claim that better performances
can be obtained if one uses the right compression meth-
ods and data structures, e.g., working with a dataset loaded
in main-memory. The full potential of such an approach
is reached when the compressed structures can be queried
with decompression-free operations, e.g. rank, select and
access. Recently, several research advances have identified
such data structures which are regrouped under the Succinct
Data Structures (henceforth SDS) designation.

In this article, we present a novel system architecture based
on a subset of SDS, namely bit mapss and wavelet trees.
Our system, named WaterFowl, tackles the management of
Resource Description Framework (RDF) data, a popular for-
mat of the open source, e.g, Linked Open Data, and big
data movements. Several so-called RDF stores have been
proposed [9], [12], [1] but to the best of our knowledge, none
of them are pushing the compression aspect as far as Water-
Fowl does. Because the system uses highly compressed data
structures, the representation of RDF triples can be stored
in main-memory. This limits disk-based Input/Output op-
erations to the loading and recording of the database using
(de)serialization mechanisms. The in-memory footprint is
also kept to its minimum due to the presence of a single
index which has the self-indexed property, i.e., the com-
plete database can be reconstructed from that index. Fi-
nally, some of the entities, i.e., concepts and properties, are
’cleverly’ encoded according to the wavelet tree specificities.
This enables to represent the concept and property hierar-
chies within binary encodings. More details on the reasoning
mechanisms and capacities of WaterFowl are provided in [2].

This work leans on the description of the system architec-
ture and its storage component to present the WaterFowl
query processor. It is based on a translation of SPARQL
queries into a set of rank, select and access operations
which are performed directly on our triple storage compo-
nent. Our query optimizer uses heuristics that are based on
the syntactic and structural aspects of SPARQL triple pat-
terns and which are motivated by complexity considerations
of our translations. Before getting into the details of these
components, we first provide some background knowledge
on RDF and SPARQL as well as SDS.

1.1 Background: RDF and SPARQL
RDF is a schema-free data model that permits to describe
data on the Web. It is usually considered as the corner-
stone of the Semantic Web. Assuming disjoint infinite sets
U (RDF URI references), B (blank nodes) and L (literals),
a triple (s,p,o) ∈ (U ∪ B) x U x (U ∪ B ∪ L) is called an
RDF triple with s, p and o respectively being the subject,
predicate and object. We now also assume that V is an infi-
nite set of variables and that it is disjoint with U, B and L.
We can recursively define a SPARQL1 triple pattern as fol-

1http://www.w3.org/TR/rdf-sparql-query/

lows: (i) a triple tp ∈ (U ∪ V) x (U ∪ V) x (U ∪ V ∪ L) is a
SPARQL triple pattern, (ii) if tp1 and tp2 are triple patterns,
then (tp1.tp2) represents a group of triple patterns that must
all match, (tp1 OPTIONAL tp2) where tp2 is a set of patterns
that may extend the solution induced by tp1, and (tp1 UNION
tp2), denoting pattern alternatives, are triple patterns and
(iii) if tp is a triple pattern and C is a built-in condition
then the expression (tp FILTER C) is a triple pattern that
enables to restrict the solutions of a triple pattern match
according to the expression C. The SPARQL syntax follows
the select-from-where approach of SQL queries. The SELECT

clause specifies the variables appearing in the result set of
the query.

In [5], extensions to SPARQL semantics, called entailment
regimes, are presented. The WaterFowl system addresses
RDF and RDFS entailment regimes in the context of skolem-
ization as presented in [5], i.e., a syntactic transformation
that replaces blank nodes by ’new’ names. Most of the in-
ferences we are considering are related to entailment rules
proposed in [6]. In the context of query answering, these
rules are useful to check satisfiability and to rewrite queries.
In our system, they are implemented through the use of
adapted encodings and data structures which are directly
motivated by SDS.

1.2 Background: Succinct Data Structures
The family of SDS uses a compression rate close to theoreti-
cal optimum and simultaneously allows efficient decompression-
free query operations on the compressed data. This prop-
erty is obtained using a small amount (o(Z) bits where Z
corresponds to the theoretical optimum) of extra bits to
store extra information. Initially introduced by Jacobson [7]
when considering bit vectors (a.k.a. bit maps), the concept
is nowadays extended to wider alphabets. Bit vectors are
useful to represent data while minimizing its memory foot-
print. In its classical shape, a bit map allows, in constant
time, to access and modify a value of the vector. Munro [8]
designed an asymptotic optimal version where, in constant
time, one can (i) count the number of 1 (or 0) appearing in
the first x elements of a bit vector (denoted rankb(x) with
b ∈ {0,1}), (ii) find the position of the xth occurrence of
a bit (denoted selectb(x), b ∈ {0,1}) and (iii) retrieve the
bit at position x (denoted access(x)). Naturally, these op-
erations on bit maps would be of great interest for a wider
alphabet. The original solution was provided by Grossi et
al. [3] and roughly consists in using a balanced binary tree
– so-called wavelet tree. The alphabet is splitted into two
equal parts. One attributes a 0 to each character of the first
part and a 1 to the others. The original sequence is written,
at the root of the tree, using this encoding. The process
is repeated, in the left subtree, for the subsequence of the
original sequence only using characters of the first part of
the alphabet and, in the right subtree, for the second part.
The process iterates until ending up on singleton alphabet.
Intuitively, one has provided an encoding of each charac-
ter of the alphabet. Using rank and select operations on
the bit vectors stored in the nodes of the tree, one is able
to compute rank and select operations on the original se-
quence in O(log |alphabet|) by deep traversals of the tree.
Wavelet trees have been well studied since then and both
space and time efficient implementations are now available
(e.g., pointer-free wavelet tree and wavelet matrix of libcds

library2 and sdsl-lite3).

2. WATERFOWL’S ARCHITECTURE
As presented in Figure 1, WaterFowl follows a modular ar-
chitecture approach. The three main components are the
’Statistics and Dictionary’, ’Triple storage’ and ’Query pro-
cessing’ components. A client communication manager ac-
cepts WaterFowl commands to enable the creation of a data-
base, to provide an RDF dataset and optionally an RDFS
or OWL ontology, to load or remove an existing database,
to process a SPARQL query and to obtain explanations on
its execution. This manager communicates with the ’Statis-
tics and dictionary’ component in case of data creation or
loading or ’Query processing’ module in a case of execution
of a SPARQL query.

The dictionary component provides a unique integer iden-
tifier to each subject, property and object entries of the
RDF dataset. These identifiers are later used to encode the
complete RDF triples. This limits the memory footprint
by preventing from storing multiple times long URIs in our
database. The identifiers are currently stored using 64 bits
but due to a contextualization approach, i.e., the second
value of an encoded triple is necessarily a property, we can
allow for some identifier overlapping, e.g., between property
and concept identifiers. During the encoding step, some sim-
ple statistics, e.g., number of occurrences of each entry, are
being computed. We will emphasize in Section 3 that they
support some query optimizations. Due to space limitations,
we do not provide additional details on this ’statistics and
dictionary’ and invite interesting readers to refer to [2].

The triple storage component manages our two-layer SDS
structure. We present the main aspects of this component
through an example using the popular Lehigh University
Benchmark (LUBM) 4 and depict an extract in Figure 2.
Once the dictionaries have been defined, the triples can
be encoded in a structure that makes an intensive use of
SDS. To illustrate the structure, we will encode the follow-
ing simple RDF triples: {(Uni0, rdf:type, ub:University),

(Uni0, ub:name, "University0"),

(Dpt0, rdf:type, ub:Department), (Dpt0, ub:name,

"Department0"), (Dpt0, ub:subOrganizationOf, Uni0),

(AP0, rdf:type, ub:AssociateProfessor),

(AP0, ub:name, "Cure"),

(AP0, ub:teacherOf, C15), (AP0, ub:teacherOf, C16),

(AP0, ub:worksFor, Dpt0), (C15, rdf:type,

ub:Course), (C15, ub:name, "Course15"),

(C16, rdf:type, ub:Course)} .

The triples are first ordered by subjects, predicates and then
objects. The ordered forest of Figure 2(a) will serve to
demonstrate the creation of our two-layers structure where
each layer is composed of bitmaps and wavelet trees. The
first layer encodes the relation between the subjects and the
predicates; that is the edges between the root of each tree
and its children. The bitmap Bp is defined as follows. For
each root of the trees in Figure 2(a) – that is each subject
– the leftmost child is encoded as a 1, and the others as a

2https://code.google.com/p/libcds/
3https://github.com/simongog/sdsl-lite
4http://swat.cse.lehigh.edu/projects/lubm/

Figure 1: Architecture overview

0. On the whole, Bp contains as many 1’s as subjects in the
dataset and is of length equal to the number of predicates in
the dataset. In Figure 2(c), one obtains 101001000101 since
there are 5 subjects with the last subject having 1 predi-
cate, the first and fourth subjects having 2 predicates, the
second one having 3 while the third one have 4. The wavelet
tree WTp encodes the sequence of predicates obtained from
a pre-order traversal in the forest (i.e., second row in Fig-
ure 2(a)). The construction of the wavelet tree follows the
algorithm presented in Section 1.2.

Unlike the first layer, the second one has two bitmaps and
two wavelet trees. Bo encodes the relation between the pred-
icates and the objects; that is the edges between the leaves
and their parents in the tree representation. Whereas, the
bitmap Bc encodes the positions of ontology concepts in
the sequence of objects obtained from a pre-order traversal
in the forest (i.e., third row in Figure 2(a)). The bitmap
Bo is defined as Bp considering the forest obtained by re-
moving the first layer of the tree representation (that is the
subjects). In Figure 2(a), one obtains 1111111101111. The
bitmap Bc stores a 1 at each position of an object which is a
concept; a 0 otherwise. This is processed using a predicate
contextualization, i.e., in the dataset whenever a rdf:type
appears, we know that the object corresponds to an ontol-

ogy concept. In Figure 2(a), considering that the predi-
cate rdf:type is encoded by 00, one obtains 1010010000101.
Finally, the sequence of objects obtained from a pre-order
traversal in the forest (i.e., third row in Figure 2(a)) is split-
ted into two disjoint subsequences; one for the concepts and
one for the rest. Each of these sequences is encoded in a
wavelet tree (resp. WToc and WToi). This architecture re-
duces sparsity of identifiers and enables the management of
very large datasets and ontologies while allowing time and
space efficiency. The query processing component is fully
described in the next section with a special focus on the
optimization aspects.

3. QUERY PROCESSING
WaterFowl’s query processor consists of the sub-components
displayed in the rightmost box of Figure 1. Some of them are
following a standard relational database management sys-
tem approach but with the peculiarity of substituting SQL
for SPARQL.

Example 1. Throughout this section, we are using LUBM’s
query #2 as a running example.
SELECT ?x ?y ?z WHERE {

?x rdf:type lubm:GraduateStudent .

?y rdf:type lubm:University .

Figure 2: Two-layer overview with a forest representation of the RDF triples (a), entry encoding (b) and the
two layers of bit maps and wavelet trees (c).

?z rdf:type lubm:Department .

?x lubm:memberOf ?z .

?z lubm:subOrganizationOf ?y .

?x lubm:undergraduateDegreeFrom ?y.}

This is the case for the parsing sub-component which is re-
lying an external framework, namely Apache Jena 5, to per-
form the parsing of SPARQL queries and to transform it in
a specific algebra. Parsing is performed on the non-encoding
version of the query. The main idea is to identify malformed
queries – from the SPARQL point of view, not to datasets.

The encoding/decoding operations aim at translating URIs,
literals and possibly blank nodes found in the SPARQL
query into the corresponding database’s identifiers, resp.
translate identifiers present in the result set into URIs and
literals. Given a certain dictionary, i.e., either concept,
property or instance, we present an encoding for the triples

5https://jena.apache.org/

of our running example. Note that in Table 1 we also provide
the statistics associated to each triple entry which are not a
variable, e.g., the dataset contains 18128 occurrences of the
rdf:type property which is encoded as ’0’. These statistics
do not consider correlations bteween subjects, properties or
objects, i.e., line #1 states that object #8 appears 1874 in
the dataset but we do not know how many times it appears
in the context of the #0 property. Hence, this approach only
provides some approximations, but their computation is fast
and require a limited memory footprint, moreover they are
sufficient in the context of our query processor.

The three remaining sub-components, namely semantic check-
ing, optimization and execution, are specific to the SDS sup-
port of RDF triples and deserve dedicated sub-sections.

3.1 Semantic checking
This sub-component checks the satisfiability of a query and
tries to minimize its set of triple patterns. This can only be
performed for databases proposing an access to an associ-

Triples Statistics
S P O S P O
1 ?x 0 8 18128 1874
2 ?y 0 54 18128 979
3 ?z 0 3211 18128 15
4 ?x 6 ?z 7790
5 ?z 15 ?y 239
6 ?x 2 ?y 2414

Table 1: Encoded triple patterns and statistics of
our running example

ated ontology, e.g., expressed in RDFS or OWL. Considering
RDFS entailment regime, this requires to access information
about the domain and range of properties. In the case of
OWL ontologies, we are also interested on functional and
inverse functional properties. All the addressed metadata
are stored in the ’Statistics and Dictionary’ component.

Together with its ontology, LUBM’s query #2 presents a
simplification possibility. The second triple imposes that
the ?y variable is of type lubm:University but the ontology
states that the range of lubm:undergraduateDegreeFrom is
necessarily of this type. Hence the second triple pattern of
this query can be removed and still retain the semantics of
the original query.

3.2 Triple pattern optimization
This sub-component aims at optimizing the performance of
the query execution. In the context of a SPARQL query,
which can contain a very large number of triple patterns
and hence a large join order search space, this optimization
mainly amounts at identifying an efficient triple pattern or-
der execution. The absence of schematic structure in RDF
makes this order discovery more involved than in a relational
database context. As a consequence, most RDF stores rely
on heuristics. Like in HSP [11], our main heuristics are
based on the syntactic and structural aspects of triple pat-
terns. Nevertheless, we enrich our approach with the statis-
tics that our system has computed during the encoding step.
Our main heuristic is based on an ordering of the eight pos-
sible SPARQL triple patterns. In order to define that order,
we take into account the cost of executing these patterns
in the context of our storage architecture, i.e., in terms of
rank, select and access. Table 2 summarizes the cost of
all possible triple patterns. In theory, rank, select and ac-

cess can be performed in O(1) for bitmaps, e.g., using the
RRR structure [10] and for Wavelet Trees, rank, select and
access can be processed in O(log|A|), with |A| the size of
the alphabet. In practice, one must try to avoid the use
of select due to the significant space overhead associated
to this operation. Thus, we can define the following order
(from less to most expensive):
(SPO) � (SP?) � (S?O) � (?PO) � (S??) � (??O) � (??P)
� (???)

Note that like in HSP, the more variables in a triple pattern,
the more expensive is the execution. Nevertheless, due to
the forest shape of our overall structure, given a number of
variable, it is always less expensive to start from the subject
and descend the two layer structure.

This order enables to define a sequence in which the triple
patterns of a given query have to be executed. In the situa-
tion where several triple patterns of a query have the same
shape, we use statistics to define an order among them. For
instance, in Table 1, the first three triples follow a (?PO)
pattern. Using the statistics, we can state that the triples
should be executed in the order #3, #2 and #1 due to the
selectivity on the number of objects, resp. 15, 979 and 1874.

Considering the semantic checking (which removes triple
pattern #6 from our running example) and the optimiza-
tion steps, the execution order is #3, #2, #1, #5 and #4.

3.3 Query execution
The Execution sub-component is tightly collaborating with
the optimization one. That is after each triple pattern ex-
ecution, denoted as an iteration, over the database, we are
retrieving some new data from the store but also some in-
formation that may serve to reorder the sequence of triple
patterns waiting for execution. Hence, the optimization is
dynamic and is possibility invoked at each execution step.
Consider the order computed on our running example. Once
triple pattern #3 is executed, i.e., (?z,P,O), the remaining
triple patterns of our list can be updated by considering that
the variable ?z is now a constant and that we can evaluate
its size. The only triple impacted in Table 1 is #5 which
can be defined as (α,15, ?y), where α is the list of binding
for ?z. It can be considered as a (SP?) triple pattern and
is thus preferred to the other one variable triple patterns,
namely #2 and #1, which are (?PO). This process goes on
until no triple patterns need to be executed.

This dynamic optimization/triple pattern execution takes
the form of a graph exploration as opposed to left deep
or bushy plans based on joins. This Breadth First Search
(BFS) approach is well adapted to WaterFowl’s two-layer
storage architecture. At each triple pattern iteration step,
a set of binding is retrieved or updated for a given vari-
able and that set can be used in successive iteration steps.
Two structures, denoted node and container, ensure the
storage of intermediate results generally needed in BFS ap-
proaches. The latter is a collection of nodes that represent
a SPARQL variable. Hence, a SPARQL query is attached to
different containers in order to store intermediate results.
These containers are identified by the variables they are
representing and store two flags to support join operators:
exclude and unlink. The former one indicates whether a
variable is distinguished or not, while the latter specifies
whether it is required to clean among the nodes, i.e., re-
moves, in a garbage collector manner, the nodes that are
not related anymore.

A node is identified by its container and value pair and is
made up of a list of nodes that represent its relationships.
These relationships are either symmetric or bijective in order
to allow each node to be aware of its links. In the case of a
node removal, this node notifies its relations.

Ideally, the injection and cleaning operations are performed
in two distinct processes. The injection takes care of the
insertion of a node and creates the links if the joins are au-
thorized (according to the exclude flag). Cleaning consults
concerned containers in order to remove unnecessary nodes.

Pattern Translation
S P O 4 select BM + rank WT + select WT + rank BM + access BM + access WT
S P ? 4 select BM + rank WT + select WT + rank BM + nO SP * (access BM + access WT)
S ? O 2 select BM + nP S * (2 select BM + nO SP * (access Bc + rank Bc + access WT))
? P O min (nO * (select WT + 2 rank BM + select BM + access WT,

nP * (select WT + 2 rank BM + 2 select BM + access WT))
S ? ? 2 select BM + nP S * (2 select BM + access WT + nO SP * (access Bc + rank Bc + access WT))
? ? O nO * (2 select WT + 2 rank BM)
? P ? nP * (select WT + 2 rank BM + 2 select BM + access BM + access WT)
? ? ? nS * (2 select BM + nP S * (select WT + 2 rank BM + 2 select BM + nO SP* (access WT))

Table 2: Triple pattern heuristic: A letter (S,P or O) stands for a constant (URIs, blank nodes or literals),
the ’?’ stands for a variable. nS, nP, nO are resp. the number of occurrences of a given subject, predicate
and object. nP S is number of predicates of a given subject. nO SP is number of objects for a given
subject-predicate pair. Finally, BM and WT stand for Bit Map and Wavelet Tree.

Table 3: Query answering times (sec) on univ1000
#1 #2 #4 #5 #14

RDF-3X 1.65 14.8 4.2 2.5 1640
BigOWLIM 138 5.7 705 16771 3320
Jena TDB 3.5 2.18 4.8 6.3 2998
WaterFowl 1.7 10.1 3.6 2.3 1680

A synchronization mechanism prevents concurrent injection
and cleaning modifications.

4. EVALUATION
In this section, we present the results of our evaluation per-
formed on a set of synthetic dataset corresponding to an in-
stance of LUBM [4]. All experiments have been conducted
on a HP Z800 workstation with 2 Quad-Core Intel Xeon
Processors with 12Mbytes L2 cache, 8Gbytes of memory
and running Gentoo 2.6.37 generic x86-64. It contains two
500GB SATA disks running at 7200 rpm.

Table 3 emphasizes that the performances with the RDF-
3X system are comparable. Unsurprisingly, the two other
systems are slower than RDF-3X on Queries #1 and #14.
A fact which has been highlighted on many other evalua-
tions. Note that these queries have different characteristics
since they respectively correspond to large input with high
selectivity, complex ’triangle’ query pattern and large input
with low selectivity. Query #2 is performed more rapidly
by Jena TDB and BigOWLIM but WaterFowl is faster than
RDF-3X. We consider that this is due to a better consider-
ation of this query particular pattern. Note that queries #4
and #5 are involving inferences and demonstrates the good
performances of WaterFowl due to its integrated support for
reasoning.

5. CONCLUSION
We have presented WaterFowl, an RDF Store based on an
in-memory, compact, self-indexed approach. The query pro-
cessor we have detailed in this paper already provides inter-
esting performance results for simple SPARQL queries as
well as ones requiring inferences. In future work, we would
like to introduce a full-featured text search engine for sup-
port regular expressions present in SPARQL queries. More-
over, we aim to transform the current unmutable version

of WaterFowl into a database that accepts updates opera-
tions. Finally, to fulfill our big data vision, we are working
a distributed version of our system.

6. REFERENCES
[1] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.

Matrix ”bit” loaded: a scalable lightweight join query
processor for rdf data. In WWW, pages 41–50, 2010.

[2] O. Curé, G. Blin, D. Revuz, and D. C. Faye.
Waterfowl: A compact, self-indexed and
inference-enabled immutable rdf store. In ESWC,
pages 302–316, 2014.

[3] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In SODA, pages
841–850, 2003.

[4] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. J. Web Sem.,
3(2-3):158–182, 2005.

[5] S. Harris and A. Seaborne. SPARQL 1.1 query
language W3C recommendation.
http://www.w3.org/tr/sparql11-query/, 2013.

[6] P. Hayes. RDF semantics, W3C recommendation.
http://www.w3.org/tr/rdf-mt/, 2004.

[7] G. Jacobson. Space-efficient static trees and graphs. In
FOCS, pages 549–554, 1989.

[8] J. I. Munro. Tables. In FSTTCS, pages 37–42, 1996.

[9] T. Neumann and G. Weikum. The rdf-3x engine for
scalable management of rdf data. VLDB J.,
19(1):91–113, 2010.

[10] R. Raman, V. Raman, and S. S. Rao. Succinct
indexable dictionaries with applications to encoding
k-ary trees and multisets. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 233–242,
Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

[11] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki,
V. Christophides, and P. A. Boncz. Heuristics-based
query optimisation for sparql. In EDBT, pages
324–335, 2012.

[12] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
PVLDB, 1(1):1008–1019, 2008.

